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Variational bounds on overlaps 

M F Barnsley and P D Robinson 
School of Mathematics, Bradford University, Bradford BD7 IDP, UK 

Received 24 October 1974 

Abstract. A general formalism is presented which furnishes upper and lower variational 
bounds on squared overlaps I(& x ) I 2 ,  where x and B are vectors in a Hilbert space. The 
bounding functionals involve a self-adjoint operator A and a second operator E ,  such that 
AB = 0 and Ex = bx. Most of the non-variational bounds derived by other workers on 
quantum-mechanical overlaps emerge from the formalism, together with optimal variational 
improvements in every case. In addition many new bounds are obtained. 

1. Introduction 

In this paper we present a general theory of variational bounds on squared overlaps 
l(8, x ) I 2 ,  where x and 8 are vectors in a Hilbert space. The method relies on the avail- 
ability ofa self-adjoint operator A such that A 8  = 0 and an operator B such that Bx = bx, 
where b is a nonzero (possibly complex) number. In particular the theory applies 
directly to quantum mechanics with 8 an atomic or molecular eigenfunction and x 
some given function which is usually an approximation to 8. The squared overlap is 
an obvious measure of the accuracy of approximate eigenfunctions and is also used a 
great deal in estimating quantum-mechanical properties (for example, Weinhold 1970). 

In 0 2 we present a general theory in terms of the operators A and B. Ultimately the 
bounds are written in the form 

where f(A, B) and g(A,  B) are non-variational bounds, with variational improvements 
supplied by ?(A, B ;  0) and 2 ( A ,  B ;  a), 

In # 3 and 4 we particularize to quantum mechanics and consider a variety of choices 
for A and B. In this way many of the non-variational bounds derived by other workers 
emerge from our theory as examples off and g, and we are led immediately to corres- 
ponding variational improvements. We furthermore obtain a variety of new bounds. 

In 9 5 we briefly discuss the feasibility of evaluating the variational functionals 
and also consider a class of bounds due to Weinhold which at first sight appear to lie 
outside the reach of the present theory. 

being the trial vector. 

2. General theory 

Let A be a self-adjoint operator in a Hilbert space &' with inner product (, ). Let the 
eigenvalue spectrum of A be partly or wholly discrete and include zero as an isolated, 
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non-degenerate member. Suppose that the eigenvector 6 specified by 

A8 = 0, e E x: (e,e) = 1 (2.1) 

is unknown and that we seek bounds on [(e, x ) I 2  for an arbitrary, known vector x E 2 
If I is the eigenvalue (positive or negative) of A which is closest to the zero one and if h 

is the subspace of H which is orthogonal to 8, then 

( 5 ,  A25> 2 12(57 5 )  

u2(5, 5 )  2 ( 5 %  A25>,  

for all 5 E h. (2.2) 

(2.3) 

Further we suppose that 

although in many applications the number u2 will be infinite. These inequalities are the 
basis of complementary (upper and lower) variational bounds on I(& x)I2. 

To derive these bounds directly we consider the variation of the two functionals 

around their common stationary value achieved when 0 is the solution vector 4 of the 
equation in h : 

~4 = Q X  = x - we, x ) ,  (2.6) 
Q being the projection operator 

Q = I -le) (el. 
With the help of (2.1) and (2.6) we find that 

and 

(2.9) 

where 

F(4) = l(4 X>I2 = G(&. 

F(@) 2 i(wi2 2 ~ ( 0 ) .  

(2.10) 

(2.1 1) 

These complementary bounds can also be derived in what is perhaps a more logical 
manner by taking as a starting point dual variational principles associated with the 
linear equation 

Accordingly from (2.2) and (2.3) it follows that since A(@-  4) E h, then 

A'+ = AQx, (2.12) 
with the operator A2 decomposed in two different ways (cf Arthurs 1970, Barnsley and 
Robinson 1974). 
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It is desirable to make a further generalization in (2.1 1). Let us replace the vector x 
by BX where B is a linear operator in X with eigenvector 6 satisfying 

BO = be b # O  (2.13) 

(2.14) 

Condition (2.14) is met if B is self-adjoint and b is real, and also less trivially if B is not 
self-adjoint but satisfies 

( e , B o  = 0 for all 5 eh,  (2.15) 

as can be seen if we decompose x in the form 

The complementary variational bounds now become 

and 

(2.17) 

(2.18) 

(2.19) 

I t  is evident that whole families of bounds can now be generated by appropriate 
choices of the operators A and B. Certain choices lead to variational bounds which are 
already known. Furthermore, most of the non-variational bounds cited in the literature 
can be obtained by taking @ as the zero vector. Calling such bounds f and g we have 

(2.20) f ( ~ ,  B)  = F ( A ,  B ;  0) > i(e, X)i2 > G(A,  B ;  0) = g ( A ,  B)  

where 

and 

(2.21) 

(2.22) 

These bounds do not in general equal / (e ,  x ) I 2 .  However, the functionals F(A, B ;  @) 
and G(A, B ;  0) can always attain their common stationary value I (&  x)12 and hence can 
furnish variational improvements to the cruder bounds f(A, B) and g(A,  B). We rewrite 
(2.17) as 

F ( A , B ; @ )  = ~ ( A , B ) - Y ( A , B ; @ )  2 i(e,x>i2 2 g ( A , B ) + z ( A , B ; m )  
= G ( A , B ; @ )  (2.23) 
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Y ( A , E ; @ )  =A[ I bl -(A@,( l-$)A@)+(E;(,( 1-$)A@) 

+ ( A @ ,  (1  -$) B l ) ]  

and 

(2.24) 

(2.25) 

The optimized versions of Y ( A ,  B ;  CO) and Z ( A ,  E ;  c@) with respect to a parameter c are 

? ( A ,  E ;  0) = I ( A @ ,  ( 1 --)--X>I'(A@, A 2  E 
( 1  - $ ) A @ ) -  U' b 

(2.26) 

and 

2(A ,  B ; 0) = 1 ( A @ ,  ( $ - 1) 5 x) 1 ('40, ( g - 1) A@)- l. (2.27) 

The latter functionals are always non-negative and hence lead to improvements on the 
bounds f ( A ,  E )  and g(A,  E).  We denote such optimized bounds by 

P ( A , E ; @ )  = f ( A , E ) - ? ( A , E ; @ )  
and 

C ( A , E ; @ )  = g ( A , E ) + & A , E ; @ ) .  

(2.28) 

(2.29) 

More generally the functionals Y and Z can be optimized within a linear basis set of 
trial vectors, yielding standard generalizations of (2.26) and (2.27). 

In the event that zero is a degenerate eigenvalue of A,  so that the subspace of X cor- 
responding to this zero eigenvalue is spanned by c orthonormal vectors el, e',. . . e', 
then the foregoing theory supplies bounds on the quantity 

(2.30) 

3. Overlap with ground state 

3.1. Preliminaries 

Suppose that a quantum-mechanical system is described by a Hamiltonian H with 
normalized eigenvectors { O i }  and eigenvalues { E i }  so that 

H e i  = EiOi i = 0,1,2 . . . .  (3.1) 
Let us assume that the eigenvalues are non-degenerate and satisfy 

(3.2) 
E ,  < E ,  < E ,  < . . .  

(there is little loss of generality here in view of the remark preceding (2.30)). 
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In this section we set 8 = 8, and discuss bounds on the square-overlap 1(8,, x)12 
of an arbitrary vector x with the ground state 8,. 

The question arises as to how we should select the operators A and B, for which there 
are very many possibilities. A natural starting point is suggested by the sequence of 
lower bounds 

of the type presented by Rayner (1962b). These bounds approach the exact square- 
overlap both as n -+ CO and as a --* E, .  

The Rayner-type bounds g,(a) and generalizations thereof arise from equation (2.22) 
on choosing 

A = ( H - E , ) ” 2  B = (H - a)-“/2 n = . . .  - 1 , 0 , 1 , 2 . . .  (3.4) 

1 2 =  E , - E ,  U 2  = cx, lbI2 = (E,-a)-“. (3.5) 

A = (H-E,)“ m > 0, (3.6) 

l 2  = ( E ,  -E,)2” uz = Co. (3.7) 

so that 

We note that there is nothing to be gained by generalizing the choice for A to 

with 

To see this, consider the fundamental bounds (2.17) in the resulting form 

with 

0 = ( A @ - B x ) / b .  (3.9) 
We may assume that ( A @ ) E ~  rather than @ E X  is the arbitrary vector in (3.9). It 
follows that, for a given choice of E, any upper bound derived from (3.8) does not depend 
on the value of m and lower bounds are improved by taking m as small as possible. In 
practice this indicates m = i. 

3.2. Lower bounds 

Substitution of (3.4) and (3.5) into (2.29) leads to optimized lower bounds of the form 

I ( 60 ,x ) l~  2 g,,(a)+Z,(a;@) = G,(a;@) 
where g,(a) is the lower bound in (3.3) and 

n = . . .  - l , O ,  + l .  (3.10) 

Optimal variational improvements to Rayner-type lower bounds are supplied by these 
functionals 2,(a; @). 

When n 2 0 it can be convenient to make the substitution 

@ = ( H  - E,)’”(H - a)”/’’€’ Y € X  (3.12) 
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so that 
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(3.13) 

A related substitution is available for negative n. 

bound 
When n = 0, explicit reference to the parameter a disappears. The resulting lower 

l(60,x>12 2 g0(4+2b(a;Y) (3.14) 

has previously been given by Wang (1969). This variational principle improves go(a), 
which is the simple Eckart bound (Eckart 1930). Further, as a special case it yields the 
moment-theoretical lower bounds derived by Gordon (1968) (see Wang 1969). 

The choice n = 1 is of especial interest. It has been noted by Weinhold and Wang 
(1971) that the Braun-Rebane (1969) variational lower bound for l(e0, x>I2 which is 

is in fact stationary about gl(a) so that 

K ~ O ~  x>12 > g l ( 4  2 R(a;  W. (3.16) 

The Braun-Rebane bound is obtained by exploiting the Schwarz inequality 

( x , (H -a ) - ' x )  2 I(Q1x>12/<*,(H-a)Q>, (3.17) 

and is not a member of the general family (2.19). However it follows from (3.16) that 
the optimal variational correction 2',(a; 'U) to gl(a) is also the requisite correction to 
the Braun-Rebane bound ; thus 

(3.18) 

In this section we have assumed so far that the parameter a is real and less than Eo, 
in line with (3.3). However, results are still available for any value of a (including complex 
values) which differs from all Ei. The choice (H-c ( ) - " '~  for B is still self-adjoint if a 
is real and n is even. For complex a or odd n the choice (H-CZ)-" '~  satisfies the weaker 
conditions (2.13) and (2.15). In these latter cases the expression in (3.3) for g,(a) must 
be modified to read 

I(6, , x>12 2 R(a ; Q) + 2; (a ; 'U), Q Y € X  

(3.19) 

and appropriate modifications involving IH- a1 and IE, - a1 made to (3.1 1H3.13). 
The Braun-Rebane result is no longer relevant. 

3.3. Uppef bounds 

Bounds complementary to those in 93.2 are obtained by substituting (3.4) and (3.5) 
into the general optimum upper bound (2.28). We obtain 

I(60 1 x>12 G L(a) - ; @) n = . . .  - 1 , 0 , 1 . . .  (3.20) 
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(3.21) 

). (3.22) 

Here the sequence of upper bounds { f,(a)} is the natural complement to the sequence of 
lower bounds {g,,(a)}. The bound f , ( a )  approaches the exact result both when n 00 

and when a -+ E,. Variational improvements are supplied by the functionals ?,(a; 0). 
We note that the restriction a < E, can be relaxed in much the same way as in 8 3.2. 
For simplicity we consider situations where (H - a)-"/' is self-adjoint. 

When n 2 0 the variational improvements can again be made more practicable 
with the aid of (3.12). We have 

t ( a ;  0) = ?;(a; Y) (say 1 
= (E,-a)"I<Y, W-EO)x)l2/('+', (H-Eo)2(H-a)"'+"), Y E X  (3.23) 

Alternative substitutions are available when n < 0. 
In the case n = 0, expression (3.23) leads to the result 

I(6, 9 x>I2 G (2 ,  x >  - I(Y9 (H - EO)X>IZ/('y? (H - E o ) 2 w .  (3.24) 

This variational upper bound seems first to have been discovered by Rayner (1962a) 
and subsequently by other workers (Weinhold and Wang 1971). The moment-theoretical 
upper bounds of Gordon (1968) are a special case of (3.24) (Wang 1969). 

4. Overlap with excited states 

4.1. The  choice A = H - E, 

We now set 6 equal to 6 k ,  an excited state eigenvector, and discuss bounds on the square- 
overlap ] ( d k ,  x>I2 of an arbitrary vector x with &. 

It is not possible to pick A = (H-Ek)'/2 as we did with k = 0, for in general this 
operator is not self-adjoint. However, guided by arguments similar to those in 5 3.1, the 
next best thing is to choose 

A = (H-Ek.9 (4.1) 
corresponding to which 

u2 = a3 l2 = (Ej-Ek)2 = min[(Ek+ 1 -E,)', (Ek- 1 -Ek)']. (4.2) 
If we take as before 

B = (H-a)-"'' n = . . .  - l , O , l . . , ,  (4.3) 
and suppose that a and n are such that B is self-adjoint, then we are led to families of 
variational upper and lower bounds on l(0,,x)12 which are rather similar to those 
obtained for the ground state. In obvious notation they are 

(4.4) 

(4.5) 

P:(@) = f:(a)- ?:(a; 

where the non-variational parts are 

f :  = (Ek - a K x ,  (H- a)-% 

3 l ( O k ,  x>12 3 &(a)+Z,k(a; @) = e:(@) 
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and the optimal variational improvements are 

In the case n = 0 we have the familiar upper bound 

l(ek> x > I 2  ( x l  x > - l ( @ ,  ( H - E k ) x ) 1 2 / ( @ ?  (H-Ek)2@) (4.9) 

(Rayner 1962a, Weinhold and Wang 1971), which is actually the same as (3.24) when 
k = 0. The corresponding lower bound is however quite distinct from (3.14) when 
k = 0. With the exception of (4.9) the families of variational bounds (4.4) appear to be 
new. Inconvenient negative or fractional powers of ( H - a )  can be removed from (4.7) 
and (4.8) by appropriate choice of the trial vectors 0. 

4.2. The bounds of Weinhold and Wang and variational improvements. 

An alternative choice for A is suggested by the bounds of Weinhold and Wang (1971) 
which may be expressed in the form 

(4.10) 

(4.11) 

There are separate bounds here according as to whether p+ or p- is employed. As they 
stand these bounds are not suitable for calculations. However, with the aid of an 
operator inequality of Rosenberg et al(l960) it is possible to derive practical bounds on 
(x, ( H - p , ) - ' x )  which can be used in (4.10) (Epstein 1968, Weinhold and Wang 1971). 

A ,  = [ ("Ek)(H-f l+)-1]1'2~ B = 1, (4.12) 

then we are led to these bounds of Weinhold and Wang, together with variational 
improvements for them. First we note that A ,  is self-adjoint since (H- Ek)(H-p*) - l  
is a non-negative operator. Further we find that A: is bounded below and above 
respectively by 

In the general theory of Q 2 if we set 

(4.13) 

the upper or lower signs being chosen consistently throughout. On making the sub- 
stitutions (4.12) and (4.13) in (2.28) and (2.29) we obtain 

(4.14) E,(@) = f?-?,(@) 2 l ( e k , x ) 1 2  2 g, +2*(@) =,e*(@) 
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where 

and 

(4.15) 

(4.16) 

The functionals pi(@) and 2,(@) give optimal variational improvements to the bounds 
of Weinhold and Wang. 

5. Discussion 

5.1.  Feasibility of evaluating the variational functionals 

The variational corrections, for example (3.13) and (3.23), are found in general to involve 
matrix elements of H 3  or even higher powers of H. Furthermore, it appears necessary 
to know certain energies, such as E, and E , ,  exactly. Here we observe that neither 
requirement implies insuperable difficulties. 

Regarding the evaluation of the matrix elements of higher powers of H, we observe 
the 'freedom' of the variational corrections. They need not involve quantities like 
( x , H " x ) ,  which may well diverge (for a given n) depending on how accurately x ap- 
proximates an eigenfunction of H (for example, Gordon 1968). Instead, any trial vector 
Y such that say (Y ,  H"x)  and (Y ,  H"Y) exist will lead to valid corrections. Such trial 
vectors can always be found. An interesting discussion of how to choose them is given 
by Weinhold (1973) who has established the feasibility of calculating 2b(Y) in (3.14) 
for helium. 

Regarding the energy levels such as E, and E ,  which occur in (3.13), we note first 
of all that these numbers are usually known fairly accurately from experiment. The 
requisite energy levels need not be known exactly for the following reason. Once a 
bound has been obtained under the assumption that the energies are exact, the latter 
constraint can then be weakened and the bound correspondingly modified. As a simple 
example consider the variational upper bound (3.24) wherein we put Y = 1: 

K d O 9  x>l2 G ( X ~ X ) - I ( X ~ ( ~ - ~ , ) X ) 1 2 / ( X I ( ~ - E o ) 2 X ) .  (5.1) 
If we assume ( x ,  x )  = 1 so that 

I(e,,X>I2 G 1, 

then we can rewrite (5.1) as 

(5.3) 

We now relax the constraint that E, is exact by assuming we know only that 

E: < E ,  < E t .  (5.4) 
The bound (5.3) is correspondingly modified to read 
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Hence, providing the bounds (5.4) are tight enough to ensure that 

( x ,  HX)2 > 2 E 8 x ,  Hx) - (EV, (5.6) 

the bound (5.5) is an improvement on (5.2). Thus we do not need to know the energies 
exactly in order to obtain meaningful bounds. 

Finally we remark on a pleasing feature of having bounds in the form ‘non-variational 
part’ plus ‘variational improvement’. The evaluation of a variational improvement is 
entirely independent of the means by which the non-variational part is calculated. For 
example, a lower bound for g,(a) in (3.10) might be obtained by a subsidiary variational 
method similar to the Braun-Rebane bound in the case n = 1 ; any variational correction 
2A(a ; (P) may be added to any such lower bound to g,(a). 

5.2. Other types of bound? 

In # 3 and 4 we made several particular types of choice for the operators A and B. Many 
other choices are possible in theory ; we could consider for example - 

A ,  = [(H-Ek)(H-B,)1”2 (5.7) 

in place of A, in $4.2, or take different B’s. However, we have restricted attention to 
those A’s and B’s which lead to results related in one way or another to the bounds of 
other workers. It was felt that such variational bounds would be the most practical 
ones. 

One type of result apparently beyond the confines of our theory is exemplified by 
the variation lower bound on l ( O o , x ) 1 2  derived by Weinhold (1967) with the aid of 
a Gram determinant. This bound is distinct from the lower bounds which we give in 
that it involves an auxiliary unknown overlap l(Oo,()12 with t a trial vector. If this 
quantity is eliminated with the aid of an Eckart bound, Weinhold’s variational principle 
becomes equivalent to the Braun-Rebane one. More generally one is always faced with 
the need to eliminate I(&,, <)I2,  and it is interesting to speculate what occurs if, as an 
alternative to using the Eckart bound, one of the other variational bounds of 0 3.2 is 
used. Surely nothing will be gained. 
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